
Page 1

Quorum

Gary Koob

Page 2

Emerging Defense mission scenarios are demanding tighter operational coupling
of systems and capabilities that are currently independently developed and
deployed. Simulation, for example, must be integrated with command and control
to allow real-time course-of-action evaluation. Logistics and tactical systems
must be similarly coupled to the global command and control system to ensure
that all levels of the command hierarchy have rapid access to timely information
and the ability to act decisively on it. Interoperability issues are further
exacerbated by the increasing emphasis on rapidly deployable joint and allied
task forces.

These scenarios are incompatible with the state of the practice. “Stovepipe”
systems or subsystems are custom designed for specific functions with little
attention paid to interoperability or the potential role that that subsystem might
play in a mission. Platform capabilities are limited by the resources selected at
design time and the tight binding of software to hardware severely limits the
evolvability of the system but the high cost of redesign results in long-lived
systems based on obsolete technology. Demands placed on the system, then,
can easily exceed the capacity of the fixed resources allocated to it. Designing in
excess capacity is inefficient and costly. The rigid assignment of functions to
resources further leads to highly vulnerable systems.

Quorum

Overview

Emerging Mission Scenarios...
• Demand efficient operational

coupling of currently independent
capabilities

• Increasingly emphasize rapidly
organized joint and allied missions

Current Defense Systems...
• Are custom designed for specific

missions

• Are designed to handle anticipated
peak demands leading to:

• inefficient resource utilization

• inadequate crisis response

• Lag commercial technology curves
due to long insertion times

• Are highly vulnerable to localized
failures or attacks

Modeling &

Simulation

Information
Systems

Command & Control

Embedded Weapons Systems

Defense Environment
Stovepipe systems hinder
effectiveness, survivability

Page 3

The Quorum program envisions the equivalent of a global operating system (OS)
as a solution to this problem. Such an operating system would dynamically
discover and allocate global computing, communications, and information
resources to meet the immediate demands of an application while preserving the
illusion of a dedicated machine and the predictability of the stovepipe approach.

The graphic conceptualizes two users each executing his own application on a
distinct virtual machine supported by resources assembled from a global pool.

Quorum

Harness the aggregate computing power of distributed Harness the aggregate computing power of distributed
resources into a seamless environmentresources into a seamless environment

Vision
A Global Operating System Kernel

for assured dynamic response tofor assured dynamic response to
integrated Defense mission demandsintegrated Defense mission demands

Page 4

This slide elaborates on the high-level vision presented on the previous slide.

The Quorum resource manager would dynamically discover and allocate global
computing, communications, and information resources to meet the immediate
demands of an application. Capacity would no longer be limited by the resources
available on a particular platform or at a particular site.

Once allocated these resources would be accessible to the application through
Quorum Run-tIme Environment or virtual machine interface. The same application
would execute correctly and efficiently regardless of the number, types, or locations of
the constituent resources. The virtual machine need not be fixed but may be
customized to the view appropriate to the application. The view required by a fluid
dynamics simulation, for example, may be very different from that required by
collaborative planning.

To be effective in a military context, this operating system would have to retain the
compelling advantages of the dedicated stovepipe approach, e.g., optimization of
software to resource capabilities, predictable end-to-end performance, and security,
but in a shared, networked, highly dynamic environment, while adding further
advantages of its own such as survivability. Achieving this over shared wide area
networks is particularly challenging and will require innovative approaches to coupling
the application directly to the network reducing the overhead introduced by
middleware and operating system layers while preserving the protections, control, and
flexibility supported by these layers.

The communications, memory, and execution interfaces of the baseline run-time
environment form a substrate capable of supporting more application-specific
environments such as the High-Level Architecture (HLA) for distributed simulation and
the GCCS (Global Command and Control System) architecture.

The common substrate and shared resource base will facilitate seamless integration
of previously independent applications.

Quorum

Target Capabilities

Quorum Run-TIme Environment

HLA

Modeling & Simulation Command & Control Embedded Weapons

GCCS

Quorum Resource Manager

Defense Mission Integration
§ A distributed computing

architecture that enables
applications to cooperate to
accomplish a common mission

Assured Dynamic Response
§ Negotiated quality-of-service
§ End-to-end guarantees
§ Adaptability, survivability

Seamless Environment
§ Dynamic instantiation of

customized
execution environments

§ Integrated middleware/OS/network
communication paths

§ Shared data programming models

Shared Heterogeneous Resources
§ Marshaling & configuration of

available resources from multiple
domains on an as-needed basis

Page 5

A compelling motivation and transition opportunity for Quorum is provided by the
shipboard computing domain. This chart depicts the evolution of such systems,
exemplified by the Aegis Combat Control System. The Federated architecture
deployed on Aegis Baselines 1-6 is based on the stovepipe approach. The
Distributed LAN architecture, developed through the DARPA/NAVY High
Performance Distributed Demo (HiPerD) program, replaces the custom hardware
with COTS processors, local area networks, and portable systems software
emerging from DARPA technology programs. Each LAN, however, remains
dedicated to a specific tactical function, e.g., Anti-Air Warfare. While fault
tolerance is provided within each LAN, functions may not be reallocated across
LAN boundaries. This architecture is scheduled for deployment in Aegis
Baseline 7.

The Navy vision for the Aegis follow-on, the 21st Century Surface Combatant
(SC-21) program, is that of an Integrated Computational Plant in which all
shipboard computing functions, including administrative and mechanical, as well
as tactical, share a ship-wide pool of resources, accessible through a low-latency
network.

The similarities of this vision with the goals of the Quorum program suggest an
ideal transition opportunity for Quorum technologies as well as a valuable
Defense driver for Quorum projects.

Quorum
Quorum Insertion Opportunity:

Shipboard Computing

CommandCommand

WW
ee
aa
pp
oo
nn
ss

SS
ee
nn
ss
oo
rr
ss

TrainingTraining ReadinessReadiness

LinksLinks

Undersea SystemsUndersea Systems

Anti-Air SystemsAnti-Air Systems

Strike SystemsStrike Systems

Federated
Deployed Today

Distributed LAN
Aegis Baseline 7 (1998)

Integrated
Computational Plant

DARPA/SC-21 Concept (2010)

n Custom HW (UYK-43/44)

n Point-to-point connections
n Dedicated functionality

n Highly vulnerable

n Not evolvable

n Homogeneous COTS

n Network of LANs
n Fixed allocation

n Vulnerable to local damage

n Limited evolvability

n Heterogeneous COTS

n Low latency switched fabric
n Dynamic allocation

n Integrated functionality

n Effectively invulnerable
to localized damage

n Evolvable

Quorum

Page 6

The Naval Surface Warfare Center, Dahlgren Division, which is leading the SC-21
project, has been chartered more broadly with investigating the concept of a
standard architecture for all Naval platforms.

Programs that could be near- to mid-term adopters of such an architecture
include not only SC-21, but the New Attack Submarine (NSSN), the DARPA/Navy
Arsenal Ship Program, the next generation aircraft carrier (CVX), the LHX
Amphibious Assault vessel, and Flight II of the LPD-17 amphibious support
vessel.

Through the SC-21 program, Quorum could have a major impact on the definition
of a standard shipboard computing architecture and a broad spectrum of Fleet
platforms and missions.

Quorum
Broad Fleet Impact: Opportunities Exist

to Influence Major Platforms

LPD-17
Flight II

LHX

Surface Warfare

Undersea Warfare

Littoral Warfare

CVX

NSSN

Quorum

Arsenal Ship

SC-21

Page 7

This chart shows conceptually how the available capacity of shipboard computing
resources might be dynamically reallocated to various functions in different
modes of operation. Excess capacity may be allocated to non-critical training
exercises under low-demand conditions. In degraded modes, critical functions
must be given priority over less critical ones and under crisis conditions the
demands may exceed the available shipboard capacity. Thus, for crisis
situations, it is desirable to have the ability to distribute functionality not just within
a single platform, but among the (dynamically assembled) constituents of a battle
group.

Quorum

Integrated Computational Plant Scenario
Quorum Enables Flexible Mission Response

Normal Degraded Alert Engagement
0

20

40

60

80

100

120

Normal Degraded Alert Engagement

Warfare (external)
Warfare (on-ship)
Training
Admin
HM&E

Excess capacity
allocated for
training exercise

Shipboard
Capacity

Reduction in resources
triggers reallocation to
maintain critical functions

Alert mode reallocates
resources to warfare systems
to handle increased load

Engagement
demands exceed
capacity!

Need to discover
& exploit off-ship
resources

Page 8

Quorum’s vision therefore extends beyond the relatively controlled environment of
a single platform to a computing environment capable of spanning a battle group
and ultimately merging with the global command and control system.

Quorum

Single Platform Multi-Platform Battle Group Theater
Global Command

& Control

Broader Vision:
Integrated Battlespace Information System

Page 9

The Quorum program is driven three high-level goals that represent a paradigm
shift in the way distributed systems are conceived and constructed.

• First, the system must exhibit predictable behavior through negotiation
and assurance of the quality of service visible to the application, i.e., end-
to-end throughput, latency, jitter (timing variance), reliability, security,
regardless of the processing, communications, and I/O resources
allocated to the application or the aggregate load on the system. (Such
assurance could be in the form of bounds or probabilistic guarantees
reflecting residual nondeterminism or uncontrollable aspects of the
system.)

• Second, the system must be evolvable, not only in the sense that the size
and topology of the system should be allowed to dynamically change, but
also in the sense that one should be able to rapidly insert new resources
and automatically exploit their advanced capabilities, delivering their full
power to applications. This implies components that augment traditional
functional interfaces with descriptions of capabilities and enhanced control
features (so that those capabilities may be exploited by other
components.)

• Third, the system must be adaptable to changing system conditions,
dynamically discovering and allocating available resources and
reconfiguring in response to failures, priority demands, information warfare
attacks, etc., while maintaining (or renegotiating, if necessary) the
negotiated quality of service.

Quorum
Goals: Develop a Global OS Kernel

to Meet Defense Needs

Assurance of Service
n Ensure predictable satisfaction of negotiated end-to-end

requirements
n Provide a reliable, secure real-time shared computing

environment

Evolvability
n Deliver full capabilities of evolving COTS computing,

communications, and storage infrastructure to applications
n Support rapid insertion and exploitation of advanced

computing and communications capabilities

Adaptability
n Dynamically allocate resources on an as-needed basis
n Maintain assurance under changing resource availability
n Respond to crises, failures, or Information Warfare attacks

through rapid, dynamic reconfiguration

Page 10

The traditional approach to distributed systems is to layer a distributed run-time
environment and middleware services for security, communications, fault-
tolerance, and resource management on top of native operating systems and the
resources they control. As indicated on this slide, most current products and
research prototypes target only one layer of this model, supporting a very limited
distributed computing capability. The Linda System, for example, supports a
language-based parallel programming model for a single application with no
resource management or quality of service guarantees; PVM is a message
passing library that supports heterogeneous computing at a low level. SmartNet
supports coarse grain resource allocation but no run-time services. Technologies
have also been developed at the OS and network layers for quality of service
management, such as rate monotonic (real-time) scheduling and the RSVP
network reservation protocol.

The two key points of this slide are:
• Various aspects of the distributed computing problem have been attacked

over the past several years, providing a rich technology and experience
base to build on. None of these approaches is completely satisfactory,
however, in realizing the Quorum vision because their individual
capabilities have not been integrated (and many capabilities are missing).

• (While the layering approach is effective in managing complexity through
encapsulating functionality, this encapsulation hides critical
implementation details and capabilities from higher layers making it
impossible to achieve the assurance, evolvability, and adaptability goals of
Quorum. Thus, even if these independent capabilities were layered on top
of one another as suggested in the graphic, the system would at most
exhibit the necessary but insufficient properties of efficient resource
utilization, portability, and load balancing through work sharing.

The challenge of Quorum is to develop a new approach to structuring distributed
systems that preserves the advantages of this layering approach while enabling
the goals of assurance, evolvability, and adaptability to be achieved.

Quorum

State-of-the-Art

Shared Memory

Application Programming Interface

Resource Management

ServerOSOS Net OS

Application

Fault ToleranceSecurity

n Linda
n Calypso
n Java

n PVM, MPI
n NOW
n Horus
n Corba

n SmartNet
n Condor

n Microkernel OS
n Rate Monotonic scheduling
n RSVP, ATM protocols

Conventional Layering vs.
Resource utilization
Portability
Work sharing

Quorum Goals
Plus Assurance of Service
Plus Evolvability
Plus Adaptability

Page 11

The Quorum approach is to achieve tighter coupling of the system layers through
three key concepts:

• An overarching Quality-of-Service (QoS) architecture permits each layer to
negotiate desired quality of service tradeoffs with lower layers and provide
feedback on delivered quality of service to higher layers.

• Translucent system layers that augment conventional functional interfaces
with systemic interfaces that allow client layers to access and control
implementation and policy considerations relevant to the negotiated
quality of service. The architecture defines the protocols that govern how
these layers negotiate and convey relevant systemic information; the
translucent layer component of the program develops the layers
themselves with built-in flexibility for responding to negotiated QoS
tradeoffs. The term “translucent” distinguishes this approach from the
conventional principal of “transparency” where implementation decisions
are completely hidden from the application but nevertheless manifest
themselves through performance and reliability effects.

• The adaptive resource management component is essentially the coarsest
level of the QoS hierarchy in that it is responsible for dynamically
discovering and marshalling the available resources that can best satisfy
the application demands and reconfiguring those resources as a last
resort to maintain QoS assurance under changing system conditions.
Finer-grain adaptations may be made within the translucent system layers.

Quorum

Quorum vs. Conventional Layering

Conventional Layering vs.
Resource utilization
Portability
Work sharing

Quorum Goals
Plus Assurance of Service
Plus Evolvability
Plus Adaptability

Application

Shared Memory

Application Programming Interface

Adaptive Resource Management

ServerOSOS Net OS

Fault ToleranceSecurity

Quality

of
Service

Architecture

Translucent
System
Layers}

Page 12

This slide identifies the key quantitative objectives of the program. A few
clarifications:

Under Assurance of Service …

• Ideally, the quality of service architecture should be able to adapt the
system behavior to different environments without alteration of the
application. Currently, assumptions about the capabilities of the
environment are built into applications at design time resulting in
applications that perform poorly when ported to a lower performance
environment or that provide less information than feasible when ported to
a higher performance environment. To demonstrate automatic adaptation,
a single application will be executed without change in local area (LAN),
advanced wide area (WAN), and commercial Internet environments.

Under Resource Management …

• The term “domains” refers to distinct trust domains or security enclaves.
Allocating resources across such domains will require mutual
authentication of the client, resource manager, and server as well as a
means of providing a secure run-time environment that spans these
domains controlling access to local resources and protecting the integrity
of both the client task and the local server.

Quorum

Objectives

Assurance of Service
n Demonstrate quality of service negotiation and adaptation to three

different environments: LAN, WAN, and Internet
n Reduce end-to-end latency by order of magnitude to 125 us
n Demonstrate fault recovery in less than 100 milliseconds
n Demonstrate single real-time application spanning 3 trust domains

Evolvability
n Demonstrate ability to dynamically install and automatically exploit

new resources with improved performance over time
n Demonstrate interoperability of advanced and legacy systems

Resource Management and Adaptability
n Scalable to 5,000 nodes; 10,000 schedulable entities; 100 domains
n Dynamic allocation in less than 3 seconds within 5% of optimal
n Demonstrate crisis mode response time of less than 30 seconds

Page 13

The four tasks of the Quorum program correspond to the concepts presented on
the previous slides (QoS Architecture, Translucent layers, Adaptive Resource
Manager) plus an Integration and Demonstration task that will evaluate and
integrate component technologies, produce, distribute and support reference
prototypes of a complete Quorum system to establish a broad user base (whose
feedback will be valuable in improving the system), and evaluate and
demonstrate the technology on key Defense problems, such as the 21st Century
Surface Combatant problem.

Quorum

Quorum Tasks

Quality-of-Service Architecture
n Protocols for negotiating and monitoring multi-criteria QoS
n Algorithms for mapping end-to-end requirements onto resources

Translucent System Layers
n Dynamically customizable OS and middleware services
n Integrated computation/communication services

Adaptive Resource Manager
n Resource models and discovery protocols
n Near optimal, adaptive multi-criteria allocation algorithms
n End-to-end scheduling algorithms

Integration and Demonstration
n Series of integrated reference Quorum prototypes
n Technology assessment against Defense requirements
n Demonstrations on key representative Defense problems

Page 14

This slide outlines the key technical components and anticipated innovations of
the Quality of Service task.

Quorum
Quality-of-Service Architecture:

Technical Innovations

QoS Specification
n Representations of alternative QoS regimes

n Application perspective (end-to-end)
n Capture complex tradeoffs in multi-dimensional space
n Measurable

n Appropriate representations at other system levels

QoS Negotiation
n Protocols for reconciling available QoS with demands
n Algorithms for propagating constraints through system

layers

QoS Assurance
n Instrumentation for dynamic monitoring of delivered QoS
n Algorithms for characterizing, predicting delivered QoS
n QoS maintenance through dynamic feedback, adaptation

Page 15

An example of the QoS architecture task is provided by the Quality of Service for
Objects (QuO) project at BBN Systems and Technologies. QuO is based on the
CORBA architecture for shared objects but augments that architecture to
accommodate assured QoS over wide area networks. First, the CORBA
functional interfaces are augmented by systemic interfaces supporting QoS
negotiation and maintenance of system state information. Control of the CORBA
clients, objects, and object request brokers (ORBs) is effected through delegates,
or proxies, that reside in the client’s address space. Operation of the system at
each level is partitioned into mutually exclusive QoS regions defined by
constraints on various system parameters, such as bandwidth, latency, capacity,
etc. Each region of operation may require a distinct implementation of the service
provided at each level. For example, under low bandwidth conditions, it may be
necessary to employ data compression. The figure at the far right shows how
these regions are specified.

The right side of the architecture diagram illustrates the systemic interface which
allows querying and negotiation of QoS regions of lower layers as well as
monitoring of critical system conditions that may trigger a transition to a new QoS
region. Up calls permit notification of changes to higher levels which may turn
trigger appropriate adaptation at those levels.

The architecture also accommodates a unified exception handling mechanism
permitting adaptation to run-time exceptions, such as software and hardware
faults, as well as to general performance conditions monitored through the
environment variables.

Quorum

Architecture Overview
Example: BBN Quality of Service for Objects

Client

Object
Delegate

ORBi

Delegate
for inv

ORBi

client_callback
 client_expectations

Excep-
tions

 object_env_callback

ORB_callback
ORB_expectations

inv object_region

inv env

ORBi envExceptions

inv

in, inout,
out params;
return value

functional
interface

system
interface

Exceptions

ORB_region

env

object env

Client
Delegate client_env_callback

inv client_region

Exceptions

env

client_env

 object_callback
 object_expectations

ORBi env callback

Source: BBN Systems and Technologies

Normal:
Expected capacity >= 10

As_expected:

Measured capacity >= 10

Insufficient_resources:
Measured capacity < 10

Degraded:
Expected capacity < 10
Expected capacity >= 2

As_expected:

Extra_resources:

Measured capacity < 10
Measured capacity >= 2

Measured capacity >= 10

Insufficient_resources:
Measured capacity < 10

Unusable:
Expected capacity < 2

As_expected:

Extra_resources:

Measured capacity < 2

Measured capacity >= 2

Page 16

This slide simply illustrates schematically how the BBN delegate architecture
separates the functional aspects of the system (which the client cares about) from
the automatic QoS management activities. The latter may occasionally require
explicit guidance or control from the user, but this does not interfere with the
information flow through the application.

Quorum

QuO Delegates
Example: BBN Quality of Service for Objects

Object Database

Query

Response

Client Delegate

User Size

Send it

Dialog
Box

Clean
IDL
Interface

QuO Delegates Mask System Issues
From Functional-Part of a Client

Source: BBN Systems and Technologies

Page 17

The QoS Architecture allows layers to negotiate and monitor quality-of-service
parameters through augmented interfaces such as that shown on the left and
depicted in the BBN example. The challenge for the Translucent System Layers
task is to populate this architecture with services that exhibit the flexibility to
respond to negotiated QoS constraints by altering or customizing their
implementation or behavior in some way.

The list on the right identifies some of the innovative concepts being explored
under the program to effect this customization. The simplest concept is to
provide alternative implementations of a service, each optimized to a particular
QoS region. As the definition of these regions is often application-specific, this
approach is inherently limited.

An extreme variation of this is to allow applications to download their own custom
implementations. This is being explored in the operating systems area along with
all of the safety and security implications of the approach.

Other approaches are examining the use of compiler technology to dynamically
optimize an existing implementation to the context in which it will be used or to
dynamically generate code from a specification of requirements.

A different class of approach is to structure the service as a collection of primitive
services each supporting a distinct increment of functionality. These primitives
may then be dynamically composed to provide exactly the high-level service
required, avoiding the overhead of superfluous functionality.

A less intrusive approach is to separate out policy issues from mechanisms,
allowing efficient mechanisms to be driven by externally specified policies or run-
time data.

Finally, the service can export a very lightweight abstraction that provides minimal
functionality, allowing heavier application-specific abstractions and policies to be
built on top of it.

Quorum
Translucent System Services:

Technical Innovations

n Alternative implementations

n Downloading of custom
implementation

n Dynamic code generation/optimization

n Composition of lower level primitives

n Policies driven by run-time
information
n Application behavior
n Environment conditions

Lightweight abstractions to be
manipulated at higher levels

Functional
Interface

Systemic
Interface

Data

Data

Performance
Reliability
Security

Performance
Reliability
Security

Enhanced interface accommodates
explicit QoS-related information

Dynamic adaptation accomplished
through various mechanisms

Page 18

This slide simply outlines some of the essential system layers to which the
translucent principles must be applied to realize the Quorum vision.

Quorum

Examples: Translucent System Services

Wide-Area Shared Memory
n User-defined paging policies
n Selectable consistency protocols

Group communications
n Composable protocols

File systems
n Informed prefetching

Extensible Operating Systems
n Extensible kernels
n Specialization

Network
n RTP
n RSVP

Page 19

This is an example of how the SPIN operating system (U. Washington) employs
extensible kernel technology to achieve high-performance communications by
customizing packet processing to application requirements.

The figure shows a protocol stack that routes incoming network packets to
application-specific endpoints within the kernel. Ovals represent events raised to
route control to handlers, which are represented by boxes. Handlers implement
the protocol corresponding to their label.

This exemplifies a combination of the composition approach to customization with
downloadable modules.

Quorum

Example: SPIN Packet Filter

Extensible kernel enables application-specific
packet processing

Page 20

The third task is adaptive resource management, which requires technical
innovations in the areas of resource discovery, resource allocation algorithms and
adaptivity.

Quorum
Adaptive Resource Management:

Technical Innovations

Resource Discovery
n Models of resource capabilities
n Application profiling
n Maintenance of distributed status information

Resource Allocation
n Algorithms for near optimal allocation of heterogeneous

resources under multidimensional constraints
n Algorithms for end-to-end scheduling to meet real-time

or throughput objectives

Adaptivity
n Rapid, dynamic reconfiguration in response to changing

resource availability (failures, preemption, workload)

Page 21

This slide conceptually identifies some of the key dimensions of the resource
allocation problem.

Some of the most promising ideas involve the use of economic models for
resource allocation in which prices are assigned to resources and clients are
allocated budgets. The chart in the upper left illustrates how cost/benefit
tradeoffs must be assessed by the clients in determining how best to spend their
budgets to achieve acceptable service.

In heterogeneous systems, performance is highly dependent on “affinity”, the
degree to which a particular resource efficiently supports the computation. The
chart in the upper right plots execution time for four different jobs on three
different machine architectures, indicating that Job 4 performs best on the second
machine, while Jobs 1-3 all perform best on the first machine.

The chart in the lower left shows speed-up curves for a parallel job executing on
two different clusters of workstations. These curves must be taken into account
in allocating parallel jobs.

Achieving predictability of performance requires not only assessing performance
on particular resources but understanding the variation in that performance as a
function of the data set. The graph in the lower right shows that the execution
time of a particular application may be essentially unpredictable, having an
essentially flat distribution (purple curve). Profiling of the application can be used
to decompose this distribution into three sharper conditional distributions, each
valid on a particular subdomain, enabling much greater predictability of the
execution time. This set of distributions constitutes the compute characteristic of
the application.

Quorum
Adaptive Resource Management: Economic,

Statistical, Empirical Models Required

1 2 3 4 5 6
0

100

200

300

400

500

600

700

800

900

1 2 3 4 5 6

Parallelism

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9

Reward
Cost

Cost/Benefit
Models

Job 1 Job 2 Job 3 Job 4
0

2

4

6

8

10

12

14

16

18

Job 1 Job 2 Job 3 Job 4

Resource
Affinity

0

2

4

6

8

10

12

14

0 5 10 15 20 25 30 35 40 45 50

Compute
Characteristics

Page 22

This chart was adapted from data provided by Richard Freund at the Naval
Command Control and Ocean Surveillance Center (NCCOSC).

The bar chart compares three strategies for resource allocation. Opportunistic
Load Balancing only attempts to balance the load on the system. Limited Best
Assignment takes account only of affinity information in assigning jobs to
resources. Freund’s approach, called SmartNet, combines the criteria and
significantly outperforms the other strategies, as measured by the completion
time of the last job.

The table confirms this result, presenting results for three sets of experiments
varying the number of machines, their types and the numbers of jobs scheduled.
The results are normalized to “superoptimal”, i.e., an analytic lower bound on the
best schedule. (Determining the actual optimal allocation is an intractable
problem for large numbers of jobs and tasks.)

The table indicates that the SmartNet approach performs within 6% of optimal on
the middle experiment.

Quorum

Example: Maximizing Throughput
of Independent Jobs

Opportunistic Load
Balancing

Limited Best
Assignment

SmartNet

19

26

12

0 5 10 15 20 25 30

Opportunistic Load
Balancing

Limited Best
Assignment

SmartNet

Machine C
Machine B
Machine A

Job4

Job1 + Job2 + Job3

Job2

Job1 + Job3
Job4

Job1 + Job4
Job2
Job3

Best strategy exploits
both affinity and load
information

S calable
Architecture

Architecture
Mix

Architecture
Mix

Jobs/Machines 500/100 500/100 1000/500

LBA 26.5 27.5 105.5

OLB 1.45 1.28 1.83

S martNet 1.13 1.06 1.29

Completion Time of Last Job
(normalized to super-optimal)

Source: Richard Freund, NCCOSC

Page 23

This slide presents an overview of Quorum’s Integration and Demonstration Task.

The strategy calls for a prototype system integrator to integrate and evaluate the
constituent technologies developed under the other three tasks along with
relevant technologies developed under the DARPA Information Survivability and
Global Mobile Computing (GloMo) programs. The products of this effort will be
reference prototypes and integrated technologies that will be delivered to DoD
activities for evaluation in the context of military systems under development.

The three key receptors will be the Naval Surface Warfare Center, Dahlgren
Division (and their prime contractor, Johns Hopkins University Applied Physics
Lab) and the two principal agents for the program, NRaD, and Rome Lab.

NSWC will incorporate Quorum technologies into a testbed for the SC-21
program. As NSWC will be exploring concepts and technologies for a general
shipboard computing architecture, transition paths out of this testbed include not
only SC-21 but other major platforms as well: NSSN (New Attack Submarine),
CVX (aircraft carrier), Arsenal Ship, and LHX (amphibious assault vehicle). As
SC-21 also has requirements for high performance signal processing, it will also
be evaluating relevant technologies being developed under DARPA’s
Embeddable Systems program.

NRaD will explore insertion of Quorum technologies into the Navy’s Joint
Maritime Command Information System (JMCIS) and will work with NSWC to
explore using Quorum technology to more effectively link the JMCIS command
and control environment to the SC-21 combat control environment.

Finally, NRaD and Rome Lab will identify transition opportunities for Quorum
technologies into the Global Command and Control System (GCCS).

Quorum

Integration & Demonstration Task

NSWCDD/JHU-APL

OS

Resource
Mgmt.

Translucent
Services

QoS

Protocols

Prototype System Integrator

Information
Survivability

GloMo

Embeddable

Systems

NRaDRome Lab

SC-21 NSSN CVXJMCISGCCS

Quorum Technologies

Arsenal
Ship

LHX

Page 24

Quorum’s three technology tasks will be developing technologies that advance
from the current state of the art properties listed on the left to the desired
properties listed on the right. Progress in these advances will proceed at different
rates, as suggested by the red arrows, but snapshots will be taken at three key
points in the program, producing a series of three complete reference prototypes
of successively greater capability (see next slide).

Quorum
Integration & Demonstration Task: Quorum

Technologies Converge in Reference Prototypes

Run-TIme Environment

• Local Area

• Homogeneous
• Federated
• Generic

• Wide Area

• Heterogeneous
• Integrated
• Customized

Resource Management
• Coarse-grain
• Locally controlled

• Static

• Fine-grain
• End-to-end

• Dynamic

Quality of Service
• Load balancing

• Single criterion
• “Open loop”

• Negotiated QoS

• Multi-criteria
• Adaptive

Quorum 1 Quorum 2 Quorum 3Reference Prototypes:

Page 25

This slide presents strawman descriptions of the three major prototypes to be
developed under the program, outlining the anticipated progress in several key
parameters to be demonstrated by the prototypes.

Quorum

Quorum Reference Prototypes

Quorum 1 Quorum 2 Quorum 3

Delivery FY1998 FY1999 FY2001

Scalability 200 nodes 1000 nodes 5000 nodes

QoS Criteria End-to-end
performance

End-to-end soft
real-time

End-to-end hard
real-time

Allocation
Optimality

Within 30% Within 15% WIthin 5%

Negotiability Admission control Negotiable QoS Adaptive

Security Authentication End-system
security

End-to-end
security

Fault
Tolerance

High availability Time-constrained;
negotiable

Adaptive

Page 26

This slide summarizes some of the key technical challenges to be addressed in
the program and the approaches to be taken in addressing them. This slide
covers only the core technology tasks -- not the Integration and Demonstration
task.

Quorum
Component Technologies:

Technical Approach
Challenge Approach

QoS Negotiat ion
Reaching agreement between client
and sy stem as to the lev el of
serv ice to be expected

• Languages for specify ing end-to-end properties such as throughput, deadlines, jitter, reliability
• Accurate models of resource capabilities
• Protocols for authentiated negotiation of end-to-end quality of serv ice

QoS Assurance
Assuring that deliv ered Q oS meets
application expectations

• Instrumentation for dy namically monitoring local performance
• Framework for relating measurements to negotiated QoS
• Mechanisms for prov iding feedback to application

Shared Memory
Latencies preclude wide-area
implementation of shared memory

• Dy namic selection of protocols and policies to enable adaptation to changing environments
• Dy namic selection of consistency protocols allowing tradeoffs between sharing semantics and time
• Develop prefetching algorithms to hide latencies within application QoS requirements

Cust omizable OS
Performance of current systems is
limited by OS-network and OS-
middleware overhead

• Extensible operating systems to permit customization of kernel
• Configurable operating sy stems optimized for communications-oriented network dev ices
• Serv erless file sy stems av oid ov erhead by attaching disks directly to net

Dynamic Code Generat ion
Effective code optimization often
depends on run-time information

• High performance compilers for generating nativ e code
• Dy namic compiler optimization of code
• Specialization toolkit for customization of OS, middleware code to application requirements

Resource Discovery
Identify ing resources with the
characteristics and av ailability to
meet application needs

• Authenticated dynamic resource monitoring
• Maintenance of fully distributed consistent v iew of resource status
• Abstractions & representations of resource characteristics & capabilities

Adaptive Resource Mgmt.
Rapid, near-optimal dy namic
allocation of resources and fast
reconfiguration

• Fast near-optimal algorithms for multi-parameter allocation based on economic models, application
profiling, affinity , and resource status

• Cooperative resource management algorithms to facilitate assurance of end-to-end requirements
• Unified treatment of dy namic reconfiguration in response to failures, exceptions, load balancing, high

priority requests, attacks, QoS violations or renegotiation

Page 27

The Quorum Program is strongly coupled to the Information Survivability (IS)
program. In general, the IS program is developing modular core technologies
supporting security, fault-tolerance, real-time assurance, and survivability.
Quorum will integrate these technologies into a general distributed computing
system architecture.

The IS High Confidence Networking task is developing technologies to provide
robust, secure network services (such as name services and routing), graceful
degradation and recovery at the network level, and protocols for supporting
negotiated QoS at the network level (Quorum is primarily concerned with
exploiting network capabilities in a system and application context--not with
developing new network services).

The IS High Confidence Computing task is developing fundamental technologies
for secure operating systems, secure distributed computing, and protocols for
such integrated middleware services as real-time group communications for fault
tolerance.

The Large-Scale Systems task is developing new paradigms for survivability that
could be layered on top of Quorum and intrusion detection approaches that will
be integrated into Quorum’s QoS framework. Quorum, in turn, will be developing
the adaptive resource management approaches necessary to support
survivability goals.

Quorum
Relationship to Information

Survivability

Quorum

Survivability of Large-Scale Systems

High

Confidence

Networking

High

Confidence

Computing

Robust, Secure

Network Services

Graceful Degradation

& Recovery

Integrated High

Confidence Services

Distributed Systems

Security

Secure

Operating Systems

QoS Protocol

Support

Intrusion Detection Survivability ParadigmsAdaptive

Resource

Management

Page 28

This is the Quorum program plan identifying key developments and their target
completion dates.

Quorum

Plan

FY97 FY98 FY99 FY00 FY01

Quality-of-
S ervice
Architecture

QoS Spec 1
(performance)

Instrumentation
for monitoring
QoS

QoS Spec 2
(fault-tolerance,
RT)

QoS negotiation
protocols (perf.)

QoS Spec 3
(multi-attribute)

Demo dynamic
QoS assurance

Multi-attribute
QoS neg.
protocols

Cross-domain
QoS negotiation

Demo integrated
QoS assurance
on wide area

Translucent
S ystem Layers

Demo kernel
extensions and
specialization

Net-attached
disks

Extensible OS

Specialization
tools

Heterogeneous
shared memory

Exokernel OS

Dynamic code
gen.

RT group comm
protocol
framework

Inter-layer
optimizations

Wide-area shared
memory

Demo evolvability
through dynamic
module
replacement

Adaptive
Resource
Manager

Resource models

App. profiling
tools

Run-time resource
monitoring

Resource
discovery
protocols

Multi-constraint
allocation
algorithms

LAN-based
dynamic
discovery/
allocation

Multi-constraint
reallocation alg.

LAN-based
dynamic
adaptivity

Demo wide-area
dynamic
adaptivity

Demo crisis
response
capability

Integration
and
D emonstration

Define
architecture

Quorum 1 Quorum 2;
SC-21 Demo #1

Quorum 2;
SC-21 Demo #2
(ship-to-ship)

Quorum 3;
C3 Demo

Page 29

This plan, provided by NSWC, outlines the schedule of the SC-21 program,
identifying the key technology developments required in each year. SC-21 will
draw on technologies developed under Quorum to meet these goals.

Quorum

Shipboard Computing Plan

Capa bilit y FY199 7 FY19 98 FY19 99 FY2 000

Real-Time QoS Stand-alone RTOS evaluation Integrated hard real-time capability

Integrated time synch services

Integrated HRT, SRT, & NRT
demo

Exceed AAW timeline requirement
by 20%

Validation of system-wide QoS

Guaranteed end-to-end RT path
performance

Info Survivability Identify requirements OS security

Authorization mgmt capability

Network security

Access control capability

Integrated system-level capabililty

Demo secure shared computing
environment

Software
Composition and
Fault Tolerance

Select technologies Initial testing

Meet Aegis availability requirements

Exceed adaptability of HiPer-D

Initial capabilities in system-level
demo

Integrate into system-level demo

Composable modules (libraries)

Adaptive

Information
Transfer

Stand-alone evaluation of LWP

Identify wide-area requirements

Integrated LWP/MLP capability

Initial WAC capabilities

Integrated LWP/FT capability

Integrate WAC into system-level
demo

Integrated capability:

LWP/WAC/FT and applications

Multi-site demo

Resource
Management

Initial overload detection and load
balancing capability

Integrated RM, perf mon capability

Allocation guided by system state

Integrated RM, perf monitoring, and
visualization capability

Performance
Monitoring and
Visualization Tools

Assess visualization tools

Support AAW timeline evaluation

Instrumentation cost < Jewel

Initial visualization capability

Assess perf monitoring tools

Less intrusive than Jewel/Ximp

Exceed adaptability of HiPerD tools

Integration of perf monitoring and
visualization tools into system-
level demo

Evaluation Initial set of stand-alone
benchmarks

Initial system-level load simulator

Configurable

Supports EDM-5 requirements

Integrated system-level benchmark
toolset for system load testing

Metrics for end-to-end real-time
QoS

LWP = Light-weight protocol
MLP = Mid-level protocol
FT = Fault tolerance (group comm)

SRT = Soft Real-Time
NRT = Non-Real-Time

WAC = Wide-area Communication
HRT = Hard Real-Time

